Equi-Channel Angular Pressing
نویسندگان
چکیده
Equal channel angular Pressing (ECAP) is an innovative technique for developing ultrafine-grained microstructures first developed by Segal et al in 1981 in the former Soviet Union. The ECAP method consists of two channels that intersect at an angle, generally comprised between 90◦ and 135◦ . The deformation is produced by shear as the billet is extruded through the channels. One of the geometrical properties of the process is that the cross-section of the billet remains constant and so, it is possible to repeat the process over many cycles. Therefore, very high plastic strains can be accumulated in the billet. Thus, the ECAP process allows us to produce ultrafine-grained materials and hence to improve the mechanical properties of the material. This work presents a study of the mechanical and optical properties of the AA5083 processed by equal channel angular extrusion. Vickers microhardness and tensile tests were carried out after processing the AA5083 up to N = 5 at room temperature. The improvement obtained in mechanical properties is shown.
منابع مشابه
Parameter Analysis and optimization of equal channel angular pressing extrusion for titanium alloy using Taguchi design of experiments method
In this paper the influence of different parameters on equal channel angular pressing (EADAP) of titanium alloy is investigated. In the first step the most important parameters are selected, and then a table of experiments is designed using Taguchi method. After designing the table of experiments, all of the experiments are simulated using Abacus software and the results are optimized using Tag...
متن کاملA new approach for achieving excellent strain homogeneity in tubular channel angular pressing (TCAP) process
Tubular channel angular pressing (TCAP) is a recently invented novel severe plastic deformation technique for producing UFG tubes. Plastic deformation analysis using the finite element method (FEM) was carried out to investigate the effects of trapezoidal channel geometry on strain inhomogeneity index (SII), strain level and required load compared to previously used channel geometries. The resu...
متن کاملModeling and production of high strength Al strips by equal channel multi angular pressing method
Equal channel multi angular pressing (ECMAP) process is the efficient method to enhance the productivity of ultra-fine grained (UFG) materials, by increasing process continuity and as a result decreasing process required time. Comparing repetitive ECAP method, in the same period, the number of passes can be done by ECMAP. In this article, ECMAP of AL strips in two typical annealed and as receiv...
متن کاملPlastic deformation analysis in parallel tubular channel angular pressing (PTCAP)
Parallel tubular channel angular pressing (PTCAP) process is a novel recently developed severe plastic deformation technique for fabrication of ultrafine grained (UFG) metallic tubes. This new process consists of two half cycles and is affected by several parameters such as channel angles, deformation ratio and curvature angles. In this paper, the effects of these parameters on the plastic defo...
متن کامل3D finite element study of temperature variations during equal channel angular pressing
Equal channel angular pressing is the most promising method of severe plastic deformation with the capability of producing ultrafine grained materials. These materials exhibit improved mechanical and physical properties compared with their coarse grained counter parts.The temperature variation in the sample during ECA-pressing is a key factor determining the final microstructure and mechanical ...
متن کاملEqual Channel Angular Pressing to Produce Ultrafine Pure Copper with Excellent Electrical and Mechanical Properties
In this article, commercially pure copper samples were severely deformed by equal channel angular pressing (ECAP) up to eight passes at room temperature. The effects of severe plastic deformation on the microstructure, mechanical properties, and electrical conductivity of the copper were investigated. The microstructure evolution was followed by optical microscope and field emission scanning el...
متن کامل